浪涌保護器、防雷器、電涌保護器、詳細說明
基本信息
浪涌保護器
最原始的浪涌保護器羊角形間隙,出現(xiàn)于19世紀末期,用于架空輸電線路,防止雷擊損壞設備絕緣而造成停電,故稱“浪涌保護器”。20世紀20年代,出現(xiàn)了鋁浪涌保護器,氧化膜浪涌保護器和丸式浪涌保護器。30年代出現(xiàn)了管式浪涌保護器。50年代出現(xiàn)了碳化硅防雷器。70年代又出現(xiàn)了金屬氧化物浪涌保護器?,F(xiàn)代高壓浪涌保護器,不僅用于限制電力系統(tǒng)中因雷電引起的過電壓,也用于限制因系統(tǒng)操作產生的過電壓。
突波
浪涌也叫突波,顧名思義就是超出正常工作電壓的瞬間過電壓。本質上講,浪涌是發(fā)生在僅僅幾百萬分之一秒時間內的一種劇烈脈沖,??赡芤鹄擞康脑蛴校褐匦驮O備、短路、電源切換或大型發(fā)動機。而含有浪涌阻絕裝置的產品可以有效地吸收突發(fā)的巨大能量,以保護連接設備免于受損。
防雷器
浪涌保護器,也叫防雷器,是一種為各種電子設備、儀器儀表、通訊線路提供安全防護的電子裝置。當電氣回路或者通信線路中因為外界的干擾突然產生尖峰電流或者電壓時,浪涌保護器能在極短的時間內導通分流,從而避免浪涌對回路中其他設備的損害。
基本與特點
保護通流量大,殘壓極低,響應時間快;
? 采用最新滅弧技術,徹底避免火災;;
? 采用溫控保護電路,內置熱保護;
? 帶有電源狀態(tài)指示,指示浪涌保護器工作狀態(tài);
? 結構嚴謹,工作穩(wěn)定可靠。
分析浪涌保護器
雷電災害是最嚴重的自然災害之一,全世界每年因雷電災害造成的人員傷亡、財產損失不計其數(shù)。隨著電子、微電子集成化設備的大量應用,雷電過電壓和雷擊電磁脈沖所造成的系統(tǒng)和設備的損壞越來越多。因此,盡快解決建筑物和電子信息系統(tǒng)雷電災害防護問題顯得十分重要。
隨著相關設備對防雷要求的日益嚴格,安裝浪涌保護器(Surge Protection Device, SPD)抑制線路上的浪涌和瞬時過電壓、泄放線路上的過電流成為現(xiàn)代防雷技術的重要環(huán)節(jié)之一。
1 雷電的特性
防雷包括外部防雷和內部防雷。外部防雷以接閃器(避雷針、避雷網、避雷帶、避雷線)、引下線、接地裝置為主,其主要的功能是為了確保建筑物本體免受直擊雷的侵襲,將可能擊中建筑物的雷電通過避雷針(帶、網、線)、引下線等泄放入大地。內部防雷包括防雷電感應、線路浪涌、地電位反擊、雷電波入侵以及電磁與靜電感應的措施。其基本方法是采用等電位聯(lián)結,包括直接連接和通過SPD間接連接,使金屬體、設備線路與大地形成一個有條件的等電位體,將因雷擊和其他浪涌引起的內部設施分流和感應的雷電流或浪涌電流泄放入大地,從而保護建筑物內人員和設備的安全。
雷電的特點是電壓上升非???10μs以內),峰值電壓高(數(shù)萬至數(shù)百萬伏),電流大(幾十至幾百千安),維持時間較短(幾十至幾百微秒),傳輸速度快(以光速傳播),能量非常巨大,是浪涌電壓中最具破壞力的一種。
2 浪涌保護器的分類
SPD是電子設備雷電防護中不可缺少的一種裝置,其作用是把竄入電力線、信號傳輸線的瞬時過電壓限制在設備或系統(tǒng)所能承受的電壓范圍內,或將強大的雷電流泄流入地,保護被保護的設備或系統(tǒng)不受沖擊。
2. 1 按工作原理分類
按其工作原理分類, SPD可以分為電壓開關型、限壓型及組合型。
(1)電壓開關型SPD。在沒有瞬時過電壓時呈現(xiàn)高阻抗,一旦響應雷電瞬時過電壓,其阻抗就突變?yōu)榈妥杩?允許雷電流通過,也被稱為“短路開關型SPD”。
(2)限壓型SPD。當沒有瞬時過電壓時,為高阻抗,但隨電涌電流和電壓的增加,其阻抗會不斷減小,其電流電壓特性為強烈非線性,有時被稱為“鉗壓型SPD”。
(3)組合型SPD。由電壓開關型組件和限壓型組件組合而成,可以顯示為電壓開關型或限壓型或兩者兼有的特性,這決定于所加電壓的特性。
2. 2 按用途分類
按其用途分類, SPD可以分為電源線路SPD和信號線路SPD兩種。
2. 2. 1 電源線路SPD
由于雷擊的能量是非常巨大的,需要通過分級泄放的方法,將雷擊能量逐步泄放到大地。在直擊雷非防護區(qū)(LPZ0A)或在直擊雷防護區(qū)(LPZ0B)與第一防護區(qū)(LPZ1)交界處,安裝通過Ⅰ級分類試驗的浪涌保護器或限壓型浪涌保護器作為第一級保護,對直擊雷電流進行泄放,或者當電源傳輸線路遭受直接雷擊時,將傳導的巨大能量進行泄放。在第一防護區(qū)之后的各分區(qū)(包含LPZ1區(qū))交界處安裝限壓型浪涌保護器,作為二、三級或更高等級保護。第二級保護器是針對前級保護器的殘余電壓以及區(qū)內感應雷擊的防護設備,在前級發(fā)生較大雷擊能量吸收時,仍有一部分對設備或第三級保護器而言是相當巨大的能量,會傳導過來,需要第二級保護器進一步吸收。同時,經過第一級防雷器的傳輸線路也會感應雷擊電磁脈沖輻射。當線路足夠長時,感應雷的能量就變得足夠大,需要第二級保護器進一步對雷擊能量實施泄放。第三級保護器對通過第二級保護器的殘余雷擊能量進行保護。根據(jù)被保護設備的耐壓等級,假如兩級防雷就可以做到限制電壓低于設備的耐壓水平,就只需要做兩級保護;假如設備的耐壓水平較低,可能需要四級甚至更多級的保護。
選擇SPD,首先需要了解一些參數(shù)及其工作原理。
(1) 10/350μs波是模擬直擊雷的波形,波形能量大; 8/20μs波是模擬雷電感應和雷電傳導的波形。
(2)標稱放電電流In是指流過SPD、8/20μs電流波的峰值電流。
(3)最大放電電流Imax又稱為最大通流量,指使用8/20μs電流波沖擊SPD一次能承受的最大放電電流。
(4)最大持續(xù)耐壓Uc(rms)指可連續(xù)施加在SPD上的最大交流電壓有效值或直流電壓。
(5)殘壓Ur指在額定放電電流In下的殘壓值。
(6)保護電壓Up表征SPD限制接線端子間的電壓特性參數(shù),其值可從優(yōu)選值的列表中選取,應大于限制電壓的最高值。
(7)電壓開關型SPD主要泄放的是10/350μs電流波,限壓型SPD主要泄放的是8/20μs電流波。
編輯本段一、浪涌保護器(SPD)工作原理
浪涌保護器(Surge protection Device)是電子設備雷電防護中不可缺少的一種裝置。
浪涌保護器工作原理圖
“避雷器”或“過電壓保護器”英文簡寫為SPD.浪涌保護器的作用是把竄入電力線、信號傳輸線的瞬時過電壓限制在設備或系統(tǒng)所能承受的電壓范圍內,或將強大的雷電流泄流入地,保護被保護的設備或系統(tǒng)不受沖擊而損壞。
浪涌保護器的類型和結構按不同的用途有所不同,但它至少應包含一個非線性電壓限制元件。用于浪涌保護器的基本元器件有:放電間隙、充氣放電管、壓敏電阻、抑制二極管和扼流線圈等。
浪涌保護器的基本元器件
1.放電間隙(又稱保護間隙):
它一般由暴露在空氣中的兩根相隔一定間隙的金屬棒組成,其中一根金屬棒與所需保護設備的電源相線L1或零線(N)相連,另一根金屬棒與接地線(PE)相連接,當瞬時過電壓襲來時,間隙被擊穿,把一部分過電壓的電荷引入大地,避免了被保護設備上的電壓升高。這種放電間隙的兩金屬棒之間的距離可按需要調整,結構較簡單,其缺點是滅弧性能差。改進型的放電間隙為角型間隙,它的滅弧功能較前者為好,它是靠回路的電動力F作用以及熱氣流的上升作用而使電弧熄滅的。
2.氣體放電管:
它是由相互離開的一對冷陰板封裝在充有一定的惰性氣體(Ar)的玻璃管或陶瓷管內組成的。為了提高放電管的觸發(fā)概率,在放電管內還有助觸發(fā)劑。這種充氣放電管有二極型的,也有三極型的,
氣體放電管的技術參數(shù)主要有:直流放電電壓Udc;沖擊放電電壓Up(一般情況下Up≈(2~3)Udc;工頻耐受電流In;沖擊耐受電流Ip;絕緣電阻R(>109Ω);極間電容(1-5PF)
氣體放電管可在直流和交流條件下使用,其所選用的直流放電電壓Udc分別如下:在直流條件下使用:Udc≥1.8U0(U0為線路正常工作的直流電壓)
在交流條件下使用:U dc≥1.44Un(Un為線路正常工作的交流電壓有效值)
3.壓敏電阻:
它是以ZnO為主要成分的金屬氧化物半導體非線性電阻,當作用在其兩端的電壓達到一定數(shù)值后,電阻對電壓十分敏感。它的工作原理相當于多個半導體P-N的串并聯(lián)。壓敏電阻的特點是非線性特性好(I=CUα中的非線性系數(shù)α),通流容量大(~2KA/cm2),常態(tài)泄漏電流?。?0-7~10-6A),殘壓低(取決于壓敏電阻的工作電壓和通流容量),對瞬時過電壓響應時間快(~10-8s),無續(xù)流。
壓敏電阻的技術參數(shù)主要有:壓敏電壓(即開關電壓)UN,參考電壓Ulma;殘壓Ures;殘壓比K(K=Ures/UN);最大通流容量Imax;泄漏電流;響應時間。
壓敏電阻的使用條件有:壓敏電壓:UN≥[(√2×1.2)/0.7]U0(U0為工頻電源額定電壓)
最小參考電壓:Ulma≥(1.8~2)Uac (直流條件下使用)
Ulma≥(2.2~2.5)Uac(在交流條件下使用,Uac為交流工作電壓)
壓敏電阻的最大參考電壓應由被保護電子設備的耐受電壓來確定,應使壓敏電阻的殘壓低于被保護電子設備的而損電壓水平,即(Ulma)max≤Ub/K,上式中K為殘壓比,Ub為被保護設備的而損電壓。
4.抑制二極管:
抑制二極管具有箝位限壓功能,它是工作在反向擊穿區(qū),由于它具有箝位電壓低和動作響應快的優(yōu)點,特別適合用作多級保護電路中的最末幾級保護元件。抑制二極管在擊穿區(qū)內的伏安特性可用下式表示:I=CUα,上式中α為非線性系數(shù),對于齊納二極管α=7~9,在雪崩二極管α=5~7.
抑制二極管的技術參數(shù)主要有
(1)額定擊穿電壓,它是指在指定反向擊穿電流(常為lma)下的擊穿電壓,這于齊納二極管額定擊穿電壓一般在2.9V~4.7V范圍內,而雪崩二極管的額定擊穿電壓常在5.6V~200V范圍內。
(2)最大箝位電壓:它是指管子在通過規(guī)定波形的大電流時,其兩端出現(xiàn)的最高電壓。
(3)脈沖功率:它是指在規(guī)定的電流波形(如10/1000μs)下,管子兩端的最大箝位電壓與管子中電流等值之積。
(4)反向變位電壓:它是指管子在反向泄漏區(qū),其兩端所能施加的最大電壓,在此電壓下管子不應擊穿。此反向變位電壓應明顯高于被保護電子系統(tǒng)的最高運行電壓峰值,也即不能在系統(tǒng)正常運行時處于弱導通狀態(tài)。
(5)最大泄漏電流:它是指在反向變位電壓作用下,管子中流過的最大反向電流。
(6)響應時間:10-11s
5.扼流線圈:扼流線圈是一個以鐵氧體為磁芯的共模干擾抑制器件,它由兩個尺寸相同,匝數(shù)相同的線圈對稱地繞制在同一個鐵氧體環(huán)形磁芯上,形成一個四端器件,要對于共模信號呈現(xiàn)出大電感具有抑制作用,而對于差模信號呈現(xiàn)出很小的漏電感幾乎不起作用。扼流線圈使用在平衡線路中能有效地抑制共模干擾信號(如雷電干擾),而對線路正常傳輸?shù)牟钅P盘枱o影響。
扼流線圈在制作時應滿足以下要求:
1)繞制在線圈磁芯上的導線要相互絕緣,以保證在瞬時過電壓作用下線圈的匝間不發(fā)生擊穿短路。
2)當線圈流過瞬時大電流時,磁芯不要出現(xiàn)飽和。
3)線圈中的磁芯應與線圈絕緣,以防止在瞬時過電壓作用下兩者之間發(fā)生擊穿。
4)線圈應盡可能繞制單層,這樣做可減小線圈的寄生電容,增強線圈對瞬時過電壓的而授能力。
6. 1/4波長短路器
1/4波長短路器是根據(jù)雷電波的頻譜分析和天饋線的駐波理論所制作的微波信號浪涌保護器,這種保護器中的金屬短路棒長度是根據(jù)工作信號頻率(如900MHZ或1800MHZ)的1/4波長的大小來確定的。此并聯(lián)的短路棒長度對于該工作信號頻率來說,其阻抗無窮大,相當于開路,不影響該信號的傳輸,但對于雷電波來說,由于雷電能量主要分布在n+KHZ以下,此短路棒對于雷電波阻抗很小,相當于短路,雷電能量級被泄放入地。
由于1/4波長短路棒的直徑一般為幾毫米,因此耐沖擊電流性能好,可達到30KA(8/20μs)以上,而且殘壓很小,此殘壓主要是由短路棒的自身電感所引起的,其不足之處是工頻帶較窄,帶寬約為2%~20%左右,另一個缺點是不能對天饋設施加直流偏置,使某些應用受到限制。
SPD的基本電路
浪涌保護器的電路根據(jù)不同需要,有不同的形式,其基本元器件就是上面介紹的幾種,一個技術精通的防雷產品研究工作者,可設計出五花八門的電路,好似一盒積木可搭出不同的結構圖案。研制出既有效又性能價格比好的產品,是防雷工作者的重任。
編輯本段二、浪涌保護器(也稱防雷器)的分級防護
由于雷擊的能量是非常巨大的,需要通過分級泄放的方法,將雷擊能量逐步泄放到大地。第一級防雷器可以對于直接雷擊電流進行泄放,或者當電源傳輸線路遭受直接雷擊時傳導的巨大能量進行泄放,對于有可能發(fā)生直接雷擊的地方,必須進行CLASS—I的防雷。第二級防雷器是針對前級防雷器的殘余電壓以及區(qū)內感應雷擊的防護設備,對于前級發(fā)生較大雷擊能量吸收時,仍有一部分對設備或第三級防雷器而言是相當巨大的能量會傳導過來,需要第二級防雷器進一步吸收。同時,經過第一級防雷器的傳輸線路也會感應雷擊電磁脈沖輻射LEMP,當線路足夠長感應雷的能量就變得足夠大,需要第二級防雷器進一步對雷擊能量實施泄放。第三級防雷器是對LEMP和通過第二級防雷器的殘余雷擊能量進行保護。
1、第一級保護
目的是防止浪涌電壓直接從LPZ0區(qū)傳導進入LPZ1區(qū),將數(shù)萬至數(shù)十萬伏的浪涌電壓限制到2500—3000V。
入戶電力變壓器低壓側安裝的電源防雷器作為第一級保護時應為三相電壓開關型電源防雷器,其雷電通流量不應低于60KA。該級電源防雷器應是連接在用戶供電系統(tǒng)入口進線各相和大地之間的大容量電源防雷器。一般要求該級電源防雷器具備每相100KA以上的最大沖擊容量,要求的限制電壓小于1500V,稱之為CLASS I級電源防雷器。這些電磁防雷器是專為承受雷電和感應雷擊的大電流以及吸引高能量浪涌而設計的,可將大量的浪涌電流分流到大地。它們僅提供限制電壓(沖擊電流流過電源防雷器時,線路上出現(xiàn)的最大電壓稱為限制電壓)為中等級別的保護,因為CLASS I級保護器主要是對大浪涌電流進行吸收,僅靠它們是不能完全保護供電系統(tǒng)內部的敏感用電設備的。
第一級電源防雷器可防范10/350μs、100KA的雷電波,達到IEC規(guī)定的最高防護標準。其技術參考為:雷電通流量大于或等于100KA(10/350μs);殘壓值不大于2.5KV;響應時間小于或等于100ns。
2、第二級防護
目的是進一步將通過第一級防雷器的殘余浪涌電壓的值限制到1500—2000V,對LPZ1—LPZ2實施等電位連接。
分配電柜線路輸出的電源防雷器作為第二級保護時應為限壓型電源防雷器,其雷電流容量不應低于20KA,應安裝在向重要或敏感用電設備供電的分路配電處。這些電源防雷器對于通過了用戶供電入口處浪涌放電器的剩余浪涌能量進行更完善的吸收,對于瞬態(tài)過電壓具有極好的抑制作用。該處使用的電源防雷器要求的最大沖擊容量為每相45kA以上,要求的限制電壓應小于1200V,稱之為CLASS II級電源防雷器。一般用戶供電系統(tǒng)做到第二級保護就可以達到用電設備運行的要求了
第二級電源防雷器采用C類保護器進行相—中、相—地以及中—地的全模式保護,主要技術參數(shù)為:雷電通流容量大于或等于40KA(8/20μs);殘壓峰值不大于1000V;響應時間不大于25ns。
3、第三級保護
目的是最終保護設備的手段,將殘余浪涌電壓的值降低到1000V以內,使浪涌的能量不致?lián)p壞設備。
在電子信息設備交流電源進線端安裝的電源防雷器作為第三級保護時應為串聯(lián)式限壓型電源防雷器,其雷電通流容量不應低于10KA。
最后的防線可在用電設備內部電源部分采用一個內置式的電源防雷器,以達到完全消除微小的瞬態(tài)過電壓的目的。該處使用的電源防雷器要求的最大沖擊容量為每相20KA或更低一些,要求的限制電壓應小于1000V。對于一些特別重要或特別敏感的電子設備具備第三級保護是必要的,同時也可以保護用電設備免受系統(tǒng)內部產生的瞬態(tài)過電壓影響。
對于微波通信設備、移動機站通信設備及雷達設備等使用的整流電源,宜視其工作電壓的保護需要分別選用工作電壓適配的直流電源防雷器作為末級保護。
4、第四級及四級以上保護
根據(jù)被保護設備的耐壓等級,假如兩級防雷就可以做到限制電壓低于設備的耐壓水平,就只需要做兩級保護,假如設備的耐壓水平較低,可能需要四級甚至更多級的保護。第四級保護其雷電通流容量不應低于5KA。
編輯本段三、浪涌保護器的分類:
1、按工作原理分:
1.開關型:其工作原理是當沒有瞬時過電壓時呈現(xiàn)為高阻抗,但一旦響應雷電瞬時過電壓時,其阻抗就突變?yōu)榈椭?,允許雷電流通過。用作此類裝置時器件有:放電間隙、氣體放電管、閘流晶體管等。
2.限壓型:其工作原理是當沒有瞬時過電壓時為高阻擾,但隨電涌電流和電壓的增加其阻抗會不斷減小,其電流電壓特性為強烈非線性。用作此類裝置的器件有:氧化鋅、壓敏電阻、抑制二極管、雪崩二極管等。
3.分流型或扼流型
分流型:與被保護的設備并聯(lián),對雷電脈沖呈現(xiàn)為低阻抗,而對正常工作頻率呈現(xiàn)為高阻抗。
扼流型:與被保護的設備串聯(lián),對雷電脈沖呈現(xiàn)為高阻抗,而對正常的工作頻率呈現(xiàn)為低阻抗。
用作此類裝置的器件有:扼流線圈、高通濾波器、低通濾波器、1/4波長短路器等。
2、按用途分:
(1)電源保護器:交流電源保護器、直流電源保護器、開關電源保護器等。
? 交流電源防雷模塊適用于配電室、配電柜、開關柜、交直流配電屏等系統(tǒng)的電源保護;
? 建筑物內有室外輸入的配電箱、建筑物層配電箱;
電源型浪涌保護器
? 用于低壓( 220/380VAC)工業(yè)電網和民用電網;
? 在電力系統(tǒng)中, 主要用于自動化機房、變電站主控制室電源屏內三相電源輸入或輸出端。
適用于各種直流電源系統(tǒng),如:
? 直流配電屏;
? 直流供電設備;
? 直流配電箱;
? 電子信息系統(tǒng)柜;
? 二次電源設備的輸出端。
(2)信號保護器:低頻信號保護器、高頻信號保護器、天饋保護器等。
網絡信號防雷器適用范圍
?用于10/100Mbps SWITCH、HUB、ROUTER等網絡設備的雷擊和雷電電磁脈沖造成的感應過電壓保護; ?網絡機房網絡交換機防護; ?網絡機房服務器防護; ?網絡機房其它帶網絡接口設備防護; ?24口集成防雷箱主要應用于綜合網絡柜、分交換機柜內多信號通道的集中防護
信號類電涌保護器
視頻信號防雷器適用范圍
主要用于視頻信號設備點對點的協(xié)擊保護,可保護各種視頻傳輸設備免受來自信號傳輸線的感應雷擊和電涌電壓帶來的危害,對相同工作電壓下的RF傳輸同樣適用。 集成式多口視頻防雷箱主要應用于綜合控制柜內硬盤錄像機、視頻切割器等控制設備的集中防護。
編輯本段安裝方法
1。SPD常規(guī)安裝要求
浪涌保護器采用35MM標準導軌安裝
對于固定式SPD,常規(guī)安裝應遵循下述步驟:
1)確定放電電流路徑
2)標記在設備終端引起的額外電壓降的導線,。
3)為避免不必要的感應回路,應標記每一設備的 PE導體,
4)設備與SPD之間建立等電位連接。
5)要進行多級SPD的能量協(xié)調
為了限制安裝后的保護部分和不受保護的設備部分之間感應耦合,需進行一定測量。通過感應源與犧牲電路的分離、回路角度的選擇和閉合回路區(qū)域的限制能降低互感,
當載流分量導線是閉合回路的一部分時,由于此導線接近電路而使回路和感應電壓而減少。
一般來說,將被保護導線和沒被保護的導線分開比較好,而且,應該與接地線分開。同時,為了避免動力電纜和通信電纜之間的瞬態(tài)正交耦合,應該進行必要的測量。
2。SDP接地線徑選擇
數(shù)據(jù)線:要求大于2.5mm2 ;當長度超過0.5米時要求大于4mm2。YD/T5098-1998。
電源線:相線截面積S≤16mm2 時,地線用S ;相線截面積16mm2≤S≤35mm2 時,地線用16mm2 ;相線截面積S≥35mm2時,地線要求S/2 ;GB 50054第2.2.9條
浪涌保護器的主要參數(shù)
1、標稱電壓Un:被保護系統(tǒng)的額定電壓相符,在信息技術系統(tǒng)中此參數(shù)表明了應該選用的保護
浪涌保證器
[1]
器的類型,它標出交流或直流電壓的有效值。
2、額定電壓Uc:能長久施加在保護器的指定端,而不引起保護器特性變化和激活保護元件的最大電壓有效值。
3、額定放電電流Isn:給保護器施加波形為8/20μs的標準雷電波沖擊10次時,保護器所耐受的最大沖擊電流峰值。
4、最大放電電流Imax:給保護器施加波形為8/20μs的標準雷電波沖擊1次時,保護器所耐受的最大沖擊電流峰值。
5、電壓保護級別Up:保護器在下列測試中的最大值:1KV/μs斜率的跳火電壓;額定放電電流的殘壓。
6、響應時間tA:主要反應在保護器里的特殊保護元件的動作靈敏度、擊穿時間,在一定時間內變化取決于du/dt或di/dt的斜率。
7、數(shù)據(jù)傳輸速率Vs:表示在一秒內傳輸多少比特值,單位:bps;是數(shù)據(jù)傳輸系統(tǒng)中正確選用防雷器的參考值,防雷保護器的數(shù)據(jù)傳輸速率取決于系統(tǒng)的傳輸方式。
8、插入損耗Ae:在給定頻率下保護器插入前和插入后的電壓比率。
9、回波損耗Ar:表示前沿波在保護設備(反射點)被反射的比例,是直接衡量保護設備同系統(tǒng)阻抗是否兼容的參數(shù)。
10、最大縱向放電電流:指每線對地施加波形為8/20μs的標準雷電波沖擊1次時,保護器所耐受的最大沖擊電流峰值。
11、最大橫向放電電流:指線與線之間施加波形為8/20μs的標準雷電波沖擊1次時,保護器所耐受的最大沖擊電流峰值。
12、在線阻抗:指在標稱電壓Un下流經保護器的回路阻抗和感抗的和。通常稱為“系統(tǒng)阻抗”。
13、峰值放電電流:分兩種:額定放電電流Isn和最大放電電流Imax。
14、漏電流:指在75或80標稱電壓Un下流經保護器的直流電流
浪涌保護器像電力海綿一樣,能夠吸收危險的額外電壓,防止大多數(shù)這樣的電壓進入您的敏感設備。電涌保護器(Surge protection Device)是電子設備雷電防護中不可缺少的一種裝置,過去常稱為“避雷器”或“過電壓保護器”英文簡寫為SPD。電涌保護器的作用是把竄入電力線、信號傳輸線的瞬時過電壓限制在設備或系統(tǒng)所能承受的電壓范圍內,或將強大的雷電流泄流入地,保護被保護的設備或系統(tǒng)不受沖擊而損壞。
電涌保護器的類型和結構按不同的用途有所不同,但它至少應包含一個非線性電壓限制元件。 用于電涌保護器的基本元器件有:放電間隙、充氣放電管、壓敏電阻、抑制二極管和扼流線圈等。
一、SPD的分類:
1、按工作原理分:
1.開關型:其工作原理是當沒有瞬時過電壓時呈現(xiàn)為高阻抗,但一旦響應雷電瞬時過電壓時,其阻抗就突變?yōu)榈椭?,允許雷電流通過。用作此類裝置時器件有:放電間隙、氣體放電管、閘流晶體管等。
2.限壓型:其工作原理是當沒有瞬時過電壓時為高阻擾,但隨電涌電流和電壓的增加其阻抗會不斷減小,其電流電壓特性為強烈非線性。用作此類裝置的器件有:氧化鋅、壓敏電阻、抑制二極管、雪崩二極管等。
3.分流型或扼流型
分流型:與被保護的設備并聯(lián),對雷電脈沖呈現(xiàn)為低阻抗,而對正常工作頻率呈現(xiàn)為高阻抗。
扼流型:與被保護的設備串聯(lián),對雷電脈沖呈現(xiàn)為高阻抗,而對正常的工作頻率呈現(xiàn)為低阻抗。
用作此類裝置的器件有:扼流線圈、高通濾波器、低通濾波器、1/4波長短路器等。
按用途分:(1)電源保護器:交流電源保護器、直流電源保護器、開關電源保護器等。
(2)信號保護器:低頻信號保護器、高頻信號保護器、天饋保護器等。
二、SPD的基本元器件及其工作原理:
1.放電間隙(又稱保護間隙):
它一般由暴露在空氣中的兩根相隔一定間隙的金屬棒組成(如圖15a),其中一根金屬棒與所需保護設備的電源相線L1或零線(N)相連,另一根金屬棒與接地線(PE)相連接,當瞬時過電壓襲來時,間隙被擊穿,把一部分過電壓的電荷引入大地,避免了被保護設備上的電壓升高。這種放電間隙的兩金屬棒之間的距離可按需要調整,結構較簡單,其缺點時滅弧性能差。改進型的放電間隙為角型間隙,它的滅弧功能較前者為好,它是*回路的電動力F作用以及熱氣流的上升作用而使電弧熄滅的。
2.氣體放電管:
它是由相互離開的一對冷陰板封裝在充有一定的惰性氣體(Ar)的玻璃管或陶瓷管內組成的。為了提高放電管的觸發(fā)概率,在放電管內還有助觸發(fā)劑。這種充氣放電管有二極型的,也有三極型的,
氣體放電管的技術參數(shù)主要有:直流放電電壓Udc;沖擊放電電壓Up(一般情況下Up≈(2~3)Udc;工頻而授電流In;沖擊而授電流Ip;絕緣電阻R(>109Ω);極間電容(1-5PF)
氣體放電管可在直流和交流條件下使用,其所選用的直流放電電壓Udc分別如下:在直流條件下使用:Udc≥1.8U0(U0為線路正常工作的直流電壓)
在交流條件下使用:U dc≥1.44Un(Un為線路正常工作的交流電壓有效值)
3.壓敏電阻:
它是以ZnO為主要成分的金屬氧化物半導體非線性電阻,當作用在其兩端的電壓達到一定數(shù)值后,電阻對電壓十分敏感。它的工作原理相當于多個半導體P-N的串并聯(lián)。壓敏電阻的特點是非線性特性好(I=CUα中的非線性系數(shù)α),通流容量大(~2KA/cm2),常態(tài)泄漏電流?。?0-7~10-6A),殘壓低(取決于壓敏電阻的工作電壓和通流容量),對瞬時過電壓響應時間快(~10-8s),無續(xù)流。
壓敏電阻的技術參數(shù)主要有:壓敏電壓(即開關電壓)UN,參考電壓Ulma;殘壓Ures;殘壓比K(K=Ures/UN);最大通流容量Imax;泄漏電流;響應時間。
壓敏電阻的使用條件有:壓敏電壓:UN≥[(√2×1.2)/0.7]U0(U0為工頻電源額定電壓)
最小參考電壓:Ulma≥(1.8~2)Uac (直流條件下使用)
Ulma≥(2.2~2.5)Uac(在交流條件下使用,Uac為交流工作電壓)
壓敏電阻的最大參考電壓應由被保護電子設備的耐受電壓來確定,應使壓敏電阻的殘壓低于被保護電子設備的而損電壓水平,即(Ulma)max≤Ub/K,上式中K為殘壓比,Ub為被保護設備的而損電壓。
4.抑制二極管:
抑制二極管具有箝位限壓功能,它是工作在反向擊穿區(qū)(圖19),由于它具有箝位電壓低和動作響應快的優(yōu)點,特別適合用作多級保護電路中的最末幾級保護元件。抑制二極管在擊穿區(qū)內的伏安特性可用下式表示:I=CUα,上式中α為非線性系數(shù),對于齊納二極管α=7~9,在雪崩二極管α=5~7。
抑制二極管的技術參數(shù)主要有
(1)額定擊穿電壓,它是指在指定反向擊穿電流(常為lma)下的擊穿電壓,這于齊納二極管額定擊穿電壓一般在2.9V~4.7V范圍內,而雪崩二極管的額定擊穿電壓常在5.6V~200V范圍內。
(2)最大箝位電壓:它是指管子在通過規(guī)定波形的大電流時,其兩端出現(xiàn)的最高電壓。
(3)脈沖功率:它是指在規(guī)定的電流波形(如10/1000μs)下,管子兩端的最大箝位電壓與管子中電流等值之積。
(4)反向變位電壓:它是指管子在反向泄漏區(qū),其兩端所能施加的最大電壓,在此電壓下管子不應擊穿。此反向變位電壓應明顯高于被保護電子系統(tǒng)的最高運行電壓峰值,也即不能在系統(tǒng)正常運行時處于弱導通狀態(tài)。
(5)最大泄漏電流:它是指在反向變位電壓作用下,管子中流過的最大反向電流。
(6)響應時間:10-11s
5.扼流線圈:扼流線圈是一個以鐵氧體為磁芯的共模干擾抑制器件,它由兩個尺寸相同,匝數(shù)相同的線圈對稱地繞制在同一個鐵氧體環(huán)形磁芯上,形成一個四端器件,如圖15e所示,要對于共模信號呈現(xiàn)出大電感具有抑制作用,而對于差模信號呈現(xiàn)出很小的漏電感幾乎不起作用。扼流線圈使用在平衡線路中能有效地抑制共模干擾信號(如雷電干擾),而對線路正常傳輸?shù)牟钅P盘枱o影響。
這種扼流線圈在制作時應滿足以下要求:
1)繞制在線圈磁芯上的導線要相互絕緣,以保證在瞬時過電壓作用下線圈的匝間不發(fā)生擊穿短路。
2)當線圈流過瞬時大電流時,磁芯不要出現(xiàn)飽和。
3)線圈中的磁芯應與線圈絕緣,以防止在瞬時過電壓作用下兩者之間發(fā)生擊穿。
4)線圈應盡可能繞制單層,這樣做可減小線圈的寄生電容,增強線圈對瞬時過電壓的而授能力。
6. 1/4波長短路器
1/4波長短路器是根據(jù)雷電波的頻譜分析和天饋線的駐波理論所制作的微波信號電涌保護器,其結構如圖21所示。這種保護器中的金屬短路棒長度是根據(jù)工作信號頻率(如900MHZ或1800MHZ)的1/4波長的大小來確定的。此并聯(lián)的短路棒長度對于該工作信號頻率來說,其阻抗無窮大,相當于開路,不影響該信號的傳輸,但對于雷電波來說,由于雷電能量主要分布在n+KHZ以下(如圖22所示),此短路棒對于雷電波阻抗很小,相當于短路,雷電能量級被泄放入地。
由于1/4波長短路棒的直徑一般為幾毫米,因此耐沖擊電流性能好,可達到30KA(8/20μs)以上,而且殘壓很小,此殘壓主要是由短路棒的自身電感所引起的,其不足之處是工頻帶較窄,帶寬約為2%~20%左右,另一個缺點是不能對天饋設施加直流偏置,使某些應用受到限制。
三、SPD的基本電路
電涌保護器的電路根據(jù)不同需要,有不同的形式,其基本元器件就是上面介紹的幾種,一個技術精通的防雷產品研究工作者,可設計出五花八門的電路,好似一盒積木可搭出不同的結構圖案。研制出既有效又性能價格比好的產品,是防雷工作者的重任。
四、電涌保護器的主要參數(shù)
1、標稱電壓Un:被保護系統(tǒng)的額定電壓相符,在信息技術系統(tǒng)中此參數(shù)表明了應該選用的保護器的類型,它標出交流或直流電壓的有效值。
2、額定電壓Uc:能長久施加在保護器的指定端,而不引起保護器特性變化和激活保護元件的最大電壓有效值。
3、額定放電電流Isn:給保護器施加波形為8/20μs的標準雷電波沖擊10次時,保護器所耐受的最大沖擊電流峰值。
4、最大放電電流Imax:給保護器施加波形為8/20μs的標準雷電波沖擊1次時,保護器所耐受的最大沖擊電流峰值。
5、電壓保護級別Up:保護器在下列測試中的最大值:1KV/μs斜率的跳火電壓;額定放電電流的殘壓。
6、響應時間tA:主要反應在保護器里的特殊保護元件的動作靈敏度、擊穿時間,在一定時間內變化取決于du/dt或di/dt的斜率。
7、數(shù)據(jù)傳輸速率Vs:表示在一秒內傳輸多少比特值,單位:bps;是數(shù)據(jù)傳輸系統(tǒng)中正確選用防雷器的參考值,防雷保護器的數(shù)據(jù)傳輸速率取決于系統(tǒng)的傳輸方式。
8、插入損耗Ae:在給定頻率下保護器插入前和插入后的電壓比率。
9、回波損耗Ar:表示前沿波在保護設備(反射點)被反射的比例,是直接衡量保護設備同系統(tǒng)阻抗是否兼容的參數(shù)。
10、最大縱向放電電流:指每線對地施加波形為8/20μs的標準雷電波沖擊1次時,保護器所耐受的最大沖擊電流峰值。
11、最大橫向放電電流:指線與線之間施加波形為8/20μs的標準雷電波沖擊1次時,保護器所耐受的最大沖擊電流峰值。
12、在線阻抗:指在標稱電壓Un下流經保護器的回路阻抗和感抗的和。通常稱為“系統(tǒng)阻抗”。
13、峰值放電電流:分兩種:額定放電電流Isn和最大放電電流Imax。
14、漏電流:指在75或80標稱電壓Un下流經保護器的直流電流
浪涌保護器選型
隨著國際信息潮流的沖擊、微電子科技的沸騰和通訊、計算機及自動控制技術的日新月異,建筑開始走向高品質、高功能領域,形成了一種新的建筑形式——智能建筑。由于在智能建筑中存在眾多信息系統(tǒng),《建筑物防雷設計規(guī)范》GB50057-94(2002年版)(以下簡稱《防雷規(guī)范》)提出了安裝電涌保護器的相關要求,以保證信息系統(tǒng)的安全穩(wěn)定運行,這里僅對其中使用的電涌保護器的產品選型提幾點個人的看法。
電涌保護器從本質上看就是一種等電位連接用的材料而已,其選型就是指在不同的防雷區(qū)內,按照不同雷擊電磁脈沖的嚴重程度和等電位連接點的位置,決定位于該區(qū)域內的電子設備采用何種電涌保護器,實現(xiàn)與共用接地體等電位聯(lián)結。這里將從電涌保護器的最大放電電流Imax、持續(xù)工作電壓Uc、保護電壓Up、漏電流Ip、告警方式等方面進行論述。
按照《防雷規(guī)范》第6.4.4條規(guī)定“電涌保護器必須能承受預期通過它們的雷電流,并應符合以下兩個附加要求:通過電涌時的最大鉗位電壓,有能力熄滅在雷電流通過后產生的工頻續(xù)流?!奔措娪勘Wo器的最大鉗位電壓加上其兩端的感應電壓應與所屬系統(tǒng)的基本絕緣水平和設備允許的最大電涌電壓協(xié)調一致。
最大放電電流按照《防雷規(guī)范》第6.4.6條規(guī)定,在LPZOA、LPZOB與LPZ1區(qū)的交界處安裝電涌保護器其最大放電電流計算如下:根據(jù)《防雷規(guī)范》規(guī)定的“全部雷電流的50%流入建筑物的防雷裝置。另50%流入引入建筑物的各種外來導電物、電力線纜、通信線纜等設施”。
附錄六摘要如表一:
首次雷擊的雷電流參量、 雷電流參數(shù) 、一類防雷建筑物、二類防雷建筑物 、三類防雷建筑物 I幅值(KA) 200 150 100 T1波頭時間( s) 350 350 350 雷電波經建筑物引入的電力線纜、信息線纜、金屬管道等分解,總配電間的低配供電線纜雷電流的分流值計算表如表二,線路屏蔽時,通過的雷電流降低到原來的30%,根據(jù)《通信局(站)雷電過電壓保護工程設計規(guī)范》YD/T5098-2001中規(guī)定的脈沖為10/350 s波形的電荷量約為8/20 s模擬雷電波波形電荷量的20陪,具體計算如下:
表二:供電線纜雷電流分流值表、 雷電流參數(shù)、 一類防雷建筑 、二類防雷建筑 、三類防雷建筑 I幅值(KA) 200 150 100 供電線纜總分流值(kA) 33.33 25 16.67 每根電纜分流值(kA) 11.11 8.33 5.56 穿管屏蔽分流值(kA) 3.33 2.49 1.67 8/20 s波型轉換值(kA) 66.6 49.8 33.4 電涌保護器最大放電電流(kA) 100 65 40 一級保護(建議)﹡ (kA) 100 65 40 二級保護(建議)﹡(kA) 40 40 40 ﹡均為最大放電電流一級電涌保護器的最大放電電流如表二.《防雷規(guī)范》第6.4.8條、第6.4.9條規(guī)定,在LPZ1區(qū)與LPZ2區(qū)(機房配電箱)安裝的電涌保護器,其標稱放電電流(額定放電電流)大于5kA,選用最大放電電流為40kA、標稱放電電流為10kA的電涌保護器作為二級保護器。
2、保護電壓選擇保護器合適的殘壓固然很重要,但當電源保護器安裝在低壓電網中時,我們更應該考慮系統(tǒng)的殘壓,即在考慮保護器殘壓的同時也要考慮到電涌保護器的安裝方式對系統(tǒng)殘壓的影響,設保護器如圖(一)安裝,因雷電波在系統(tǒng)中的電流最大平均梯度不是在首次雷擊,而是在后續(xù)雷擊中,如按照《通信局(站)雷電過電壓保護工程設計規(guī)范》YD/T5098-2001中規(guī)定的模塊式保護器的接線端子與相線和零線之間的連接線長度應小于0.5米,其接地線的長度應小于1米的要求,在低壓柜中選擇合適位置,使總連接線長度小于1.0米是有可能的,因此其最大平均梯度、系統(tǒng)殘壓、保護器保護電壓等的計算如表三(保護器保護電壓選擇表)。
表三:保護器保護電壓選擇表 后續(xù)雷擊雷電流參數(shù) 一類防雷建筑物 二類防雷建筑 三類防雷建筑 I幅值(kA) 50 37.5 25 穿管屏蔽分流值(kA) 0.83 0.625 0.42 波頭時間( s) 3.32 2.5 1.68 1.0-1.5米連接線壓降 L*di/dt(V) 3320-4980 2500-3750 1680-2520 電源設備絕緣耐壓(V) 6000 6000 6000 一級電涌保護器 最大保護電壓(V) 2680-1020(17kA) 3500-2250(12.5kA) 4320-3480(8.4kA)????由表三可以看出,一級電涌保護器的保護電壓Up為4000V是不允許的,選擇保護電壓為2000V左右是合適的。電源供電到各個機房配電箱、重要用電設備、樓層配電箱時,已經經過了線纜的多次延時、解藕作用,其波頭時間將遠大于10微秒,雷電流能量也經過多次分流衰減,能量將小于5000A,因此每根線路的電流最大平均梯度=5kA/2*30%/10 s=0.075kA/ s,當電涌保護器如上圖一安裝時:A、B的最大電涌電壓= UL1+Ur+UL2=0.1kV+ Ur,(設L1+L2=1.5m),因機房設備如服務器、計算機、交換矩陣等屬于特殊保護設備,其耐沖擊電壓額定值為1500伏,此時,選擇的電涌保護器的保護電壓應小于1400伏,因此,二級電涌保護器的保護電壓(在3-5kA下)小于1200伏是合適的。
3、最大連續(xù)工作電壓Uc根據(jù)《防雷規(guī)范》第6.4.5條規(guī)定,在TN供電系統(tǒng)中其Uc最大大于1.15*220V=253伏,同時在第6.4.6條規(guī)定“在供電電壓偏差超過10%以及諧波使電壓幅值加大的場所,應根據(jù)具體情況對SPD提高持續(xù)耐壓”,有些配電箱制造廠家只選擇275V,我們認為TN供電系統(tǒng)持續(xù)工作電壓選擇275V是不合適的,其理由如下:
1)我們知道GB50057-94是按照IEC標準制定的,而IEC標準主要吸收的是歐美發(fā)達等國家的標準,其防雷依據(jù)主要是發(fā)達國家的電網的高質量,而我國電網質量與發(fā)達國家還存在比較大差距,尤其在故障電壓、電壓偏差、電壓波動、電壓畸變、諧波影響、三相不平衡系數(shù)等方面存在更大的差距,在某些地方供電電壓超過+15%,也是正常的;
2)GA173-98《計算機信息系統(tǒng)防雷保安器》產品標準規(guī)定:電涌保護器的標稱導通電壓大于2.2倍的系統(tǒng)工作電壓,即在220V工作系統(tǒng)中應大于484V;我們知道限壓型SPD的主要元器件是壓敏電阻,根據(jù)壓敏電阻的分類標準中持續(xù)耐壓與壓敏電壓(標稱導通電壓)關系表可以看出:壓敏電壓不是某一固定值,而是個范圍,對比484V,我們可以得出持續(xù)耐壓應大于350V。 表四:持續(xù)耐壓與壓敏電壓(標稱導通電壓)關系表 持續(xù)耐壓UC 壓敏電壓(V) 壓敏電壓范圍(V) 275 430 387-473 300 470 423-517 320 510 459-561 350 560 504-616 385 620 558-682 420 680 612-748 440 715 644-786 460 750 675-825 持續(xù)耐壓與殘壓是一對矛盾體,持續(xù)耐壓高,保護器的壽命高,而殘壓也高;持續(xù)耐壓低,保護器的壽命低,而殘壓也低;但在5-10kA雷電流沖擊下,持續(xù)耐壓為350V的保護器與持續(xù)耐壓為440V的保護器比較,其殘壓低不到100V,不會很快提高系統(tǒng)殘壓,因此我們認為選擇持續(xù)耐壓(如440V)比較高的保護器,以提高保護器使用壽命是合理的。
4、漏電流根據(jù)GA173-98《計算機信息系統(tǒng)防雷保護器》中第6.1.1條規(guī)定,并聯(lián)型電源避雷器的漏電流應小于20A,漏電流I0越大,電涌保護器將聚集能量而發(fā)熱的可能性增大,而漏電流又是隨著壓敏電阻的溫度升高而增大的,因此,此時該壓敏電阻就處于惡性循環(huán)狀態(tài),這也表明了漏電流隨時間的變化率(增加率)越大,電涌保護器聚集能量將越快,從而性能會越差,保護器使用壽命下降,一般情況下,保護器的漏電流小于10A為宜。
5、告警方式目前能提供的告警方式共有三類,一類是遙信、遙測告警,適用于無人值守的工作場合;另一類是可視告警,通過機械設計實現(xiàn)告警功能,該告警方式應在雷雨過后對設施進行檢查或定期檢查,適用于所有的場合,也是目前使用最多的告警方式;還有是聲光告警,此告警方式需增加一個告警模塊,目前許多專家建議謹慎使用。因為雷擊時,有可能是聲光告警模塊首先被擊壞而失去聲光告警功能,如此時產品也正好被擊壞,人們因依賴聲光告警而未察覺,等第二次雷擊時,雷電將會乘虛而入擊壞后續(xù)保護設備。
6、結構形式電涌保護器的結構形式是非常重要,主要存在兩種結構形式:整體式模塊化設計和插拔式模塊化設計。插拔式結構因存在插拔間隙而存在間隙放電,尤其在空氣濕度比較大的地方,此現(xiàn)象將會更嚴重,使保護器的使用壽命降低。整體式模塊化設計不存在任何間隙,同時因采用35mm導軌式安裝,也方便更換。